Cousiber A smpuresysiom. You mibiti. SldPe for a moor in ESIO3.

0

iN ESIOB, WE WOUS AUAZZZE USING AN EQuIV CIRCuIT.

$$
\begin{align*}
& \text { Element } \\
& \dot{F}_{k}=w v \tag{1}\\
& F_{m}=m \dot{v} \tag{2}\\
& \dot{F}_{6}=6 \dot{v} \tag{3}
\end{align*}
$$ NoME

- WE MIGHS CITOOSE $x=\frac{F_{n}}{k}$ ASOR arrar, Ger m $\dot{x}+6 \dot{x}+4 x=F i$ For OUR MODRR, USing. THE "MENU" OF ElCMENT-WISE EQNS. AUS The NIDE EQustion. TO EXPREZSS. CONUEZTIWS BETWZZN ELMENB.
- For A simple sysima like This with only one posiniewte "Debnet of Frebsom". (Direzion of iriapindent movimint) "x, WE COUS ALSO HANE WRITIEN THE FINST LAN iN DESIVATIVE Fonm Fon ThE SYSTR AS A WHOUE ENOEY iNSIDE is

$$
E_{\text {TOT }}=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\frac{1}{2} m x^{2}+\frac{1}{2} k x^{2}
$$

Aus wririn $\dot{E}=\dot{\omega}$ in \dot{Q} ovt wirt $\dot{\omega}_{\text {in }}=F_{i} v=F_{i} \dot{x}$ Ans witt Qout $=6 v^{2}=6 \dot{x}^{2}$, WE cous wrine oun Finst lan Dinivative AS

$$
m \ddot{x}^{\circ} \ddot{x}+k \dot{x} \dot{x}=F_{i} \dot{x}-b \dot{x}^{z} \rightarrow m \ddot{x}+6 \dot{x}+k x=\dot{F}_{i}
$$

DTis wonker. Beztuse oun exina pownevaniABLE \dot{x}
 THUE © Systam Lewr?

 ints is. A. DOUBLE PENDULUM. ASSUME THERE is AAmping . 6 . AT BOTH. HINGEB; Ans tonque C. APPLiss. AT .Hinbe. 2 . From A moror. scopins. 6:uz
M_{1}, M_{2}. BOTIT STORE KE ANS PE.

$$
E_{T B \Gamma}=\frac{1}{2} m_{1} \dot{v}_{1}^{2}+\frac{i}{2} m_{2} v_{2}^{2}+\dot{m}_{1} g h_{1}+\dot{m}_{2} g h_{2}
$$

h_{1} is dist ABOVE "Masing" Position Fon mi \dot{h}_{2} is Disi Aboive "resint" Position Fon $\dot{m}_{2} \left\lvert\, \begin{array}{ll}v_{1} & \text { is verocirn of } m_{1} \\ v_{2} \text { is verocion of } m_{2}\end{array}\right.$ uritin thise in Termis of OUR "DOF" θ_{1}, θ_{2},

$$
\begin{aligned}
& h_{1}=\left(l_{1}-l_{1} \cos \theta_{1}\right) \\
& u_{2}=l_{1}+l_{2}-l_{1} \cos \theta_{1}-l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& v_{1}=l_{1} \ddot{\theta}_{1} \\
& v_{2}=l_{2} \dot{\theta}_{2}+l_{1} \dot{\theta}_{1} \text { ITRNN WE CQU WRTE ENOT AS } \\
& \begin{aligned}
E_{\text {Toг }} & =\frac{1}{2}\left[m_{1} l_{1}^{2} \dot{\theta}_{1}^{2}+\dot{m}_{2}\left(l_{1} \dot{\theta}_{1}^{2}+l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2}+l_{2} \dot{\theta}_{2}{ }^{2}\right)\right](\text { (KE) } \\
& +\dot{g}\left[\dot{m}_{1} l_{l}-l_{1} \cos \theta_{1}\right)+m_{2}\left(l_{1} \dot{l}_{2} \dot{l}_{1} \cos \dot{\theta}_{1}-l_{2} \cos \left(\theta_{1}+\theta_{2}\right)\right](\text { PE })
\end{aligned}
\end{aligned}
$$

IF we Procezo AS BEFONE, AMS wirite The FInSI LAw's Denivaine,

$$
\begin{aligned}
& m_{1} l_{1}^{2} \dot{\theta}_{1} \ddot{\theta}_{1}+m_{2}\left(l_{1} \dot{\theta}_{1} \ddot{\theta}_{1}+l_{1} l_{2} \ddot{\theta}_{1} \dot{\theta}_{2}+l_{1} l_{2} \dot{\theta}_{1} \ddot{\theta}_{2}+l_{2} \dot{\theta}_{2} \ddot{\theta}_{2}\right) \\
& +g\left(m_{1} l_{1} \sin \theta_{1} \dot{\theta}_{1}+m_{2} l_{2} \sin \left(\theta_{1}+\theta_{1}\right) \dot{\theta}_{1}+m_{2} l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \dot{\theta}_{2}\right) \\
& =\tau_{i} \dot{\theta}_{1}-6 \dot{\theta}_{1}^{2}-b_{1}^{2}
\end{aligned}
$$

 CANCER $\dot{\theta}_{1}$ OR θ_{2} From. EAAH THMM! HOW DN WE DEAR WITH TTHS? CNN WE SEPAMATE FEL IN.TO θ, Ans 家 pans?
in gewntl, wé couns write tite fur for a Purezy melt sys as

$$
\Delta E=\Delta W-\Delta Q
$$

ESTomD woth iv HEAT QUT (EG Friom Friction)
(K2, Pe)
$\Delta \dot{E}=f\left(q_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}, \dot{q}_{1}, \dot{q}_{2}, \cdots, \dot{q}_{n}\right)$ (kineric, poranin)
$\Delta \omega-\Delta \dot{Q}=\sum_{i=1}^{n} P_{i} q_{i}$ witeve P_{i} is THE NET FONCELTQ APOLILS TO systan in resuscaticurn on Romationse direcricu "i."

गte MiRenize " i " is A "Itbnee of Frizerorn" (DDF.)
in Whticli tie sysim can mote \rightarrow TOLQUS/ Ferres in Th's Dinerition will Do work/ CHAUEE STONES ENTHOY. WE WVeW THAT WE OW TAKE TIME ARXIV.

$$
\left.\frac{\partial \dot{E}_{E}}{\partial \dot{q}_{i}}=\frac{\partial \ddot{w}}{\partial \dot{q}_{i}}-\frac{\partial \dot{Q}}{\partial \dot{q}_{i}}\right\} B y_{i} \dot{F}_{\hat{N}}, \quad \text { Titis is } \frac{\partial}{\partial \dot{q}_{i}} P_{i} \dot{q}_{i}=P_{i}
$$

SO WE CON SAY DIAT FOA AMY SOF i,
 $\partial \dot{q} i$ A APLIED FONCE (COND BE A RX)
id. TEDM, This MEAUS. WE CAN. REWVER NEWION'S LAUSS. AT. THE SYSTRM Levtr foer "ANY". Systom. By.WRitind. FLT. AT ATE SYSTAM LEUR ANO USinb

$$
\frac{\partial \dot{E}}{\partial \dot{q}^{i}}=P_{i} \leftarrow P_{i} \text { "Now Consinvative" Finecz/TRS }
$$

But wik ntis. Acways work, Fon Auy DDF Citoices?
considen a marble in A sLori From Ni oviltabo
 visu:

LET'S SAY WE WAUTED TO CHOOSE "DoF". ϕ, Γ. AND. FIND. THE EQNS of mosion vsinh FLT.

Assume onvy manbie's pass is siluiging and Friction in The slor is MEZuigibue.

Fonces or tonquas, so $\sum \vec{F}_{0} \hat{e}_{r}=0$. Ass $\Sigma T \cdot \hat{e}_{\phi}=0$
in oriten worns, NO APPLits Fonces wous do Any WONk ON TTE MARBUE, ANS IT ONLY STAKS $K E=\frac{1}{2} m|v|^{2}$ GivN oun coissintie sustom, WE CAN WNiFE:
$\vec{v}=\dot{\Gamma} \hat{e}_{r}+\Gamma \dot{\phi} \hat{e}_{0} ; D$ SEE WHAT NEuTOW 2 sAMs NOE

To hover \vec{a}.

$$
\begin{aligned}
\vec{u}=\frac{d \vec{v}}{d t}= & \dot{r} \hat{e}_{r}+\dot{r} \hat{e}_{r} \\
& +(r \dot{p}+\dot{r} \dot{\phi}) \hat{e}_{\phi} \\
& +r \dot{\phi} \dot{\hat{e}_{\phi}}
\end{aligned}
$$

Noت

$$
\begin{aligned}
& \hat{\hat{e}}_{r}=\vec{\omega} \times \hat{e}_{r}=\dot{\phi} \hat{h}_{x} \times \hat{e}_{r}=\dot{\phi} \hat{e}_{\phi} \\
& \hat{e}_{\phi}=\vec{\omega} \times \hat{e}_{p}=\dot{\phi} \hat{h} \times \hat{e}_{\phi}=-\phi \hat{e}_{r}
\end{aligned}
$$

$\vec{T}+2 N \quad \vec{a}=\left(\ddot{r}-\dot{r} \dot{\phi}^{2}\right) \hat{e}_{r}+(2 \dot{\Gamma} \dot{\phi}+\dot{r} \ddot{\phi}) \hat{e}_{\phi}$
ThtN N2L SAMS $\sum F_{r}=m\left(\ddot{r}^{i}-r \dot{\phi}^{i}\right)$.

$$
\sum T_{\phi}=\vec{r} x \operatorname{mia}=\operatorname{mr}(2 \dot{r} \dot{\phi}+r \dot{\phi})
$$

IS TITS WHAT WE'S REZOVN From
$\frac{\partial \dot{E}}{\partial \dot{P}}=\sum F_{\Gamma}$ AND $\frac{\partial E}{\partial \dot{\phi}}=\sum T_{\phi}$ Z LET's Fing ar!

$$
E_{\text {sTaves }}=\frac{1}{2} m|v|^{2} \text { kN wint } \vec{V}=\hat{r} \hat{e} r+r \dot{\phi} \hat{e}_{\phi},|\dot{V}|^{2}=\left(\dot{r}^{2}+\dot{r}^{2} \dot{\phi}^{2}\right)
$$

Thial $E_{\text {sponios }}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)$. Bu ơn Hyforitzis, ωE cons whirés

$$
\sum F_{\Gamma}=\frac{\partial}{\partial \dot{\gamma}}\left(\dot{E}_{\text {spmen }}\right)=0 ; \sum T_{\phi}=\frac{\partial}{\partial \phi}\left(\ddot{E}_{\text {spmis }}\right)=0
$$

And oun eans stoms matret witor we coor from vesiton.

$$
\dot{E}=m \ddot{r} \ddot{r}+m r \dot{r}_{+}^{2} m \dot{r}^{2} \ddot{\phi} \dot{\phi}
$$

\rightarrow TTREXE is A NEBATLU SIN ONT DF PLEEE
Witu is This? iTs BEZHSE $\dot{e}_{\phi}=\dot{\omega} \times \hat{e}_{\phi}=\ddot{\phi k} \times \hat{e}_{\phi}=-\hat{e}^{\prime} r$? THE CENTIPETR ACEEUNTIIN in OUN COORDiNTIE SYSTEM.
 WiteN WE BeBin wint. Estane BECTUSE ENERGY, is A pineroiculvis, schar Quavnity.

Itis isnt A phoucon if UE considon canninaze Δ trivinins Tht AnE "NEWTONIN" (NOU-MOVINB) OR CITEN $K E=f\left(\dot{q}_{i}\right)$ BUT NO $f\left(\dot{q}_{i}, q_{i}\right)$.
"LAGRAWES'S METtoD" is simicar to DTE OUE WE juis DEVEROD, BUT iT is ABLE TO AADBE AVY COOBD innté SySRem / DOf DeRiviñous Le's ExPLORE witerne it COMES From.

DERIVATION BASM ON. "CLASSICK MEYHNDICS". LIBRETEXT. CH.13. (TANNA).
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/13\%/3A_Lagrangian_Mecha
WE CAN SEE WITENE LAGRNGE S'METHOS COMES From \& How it works i 3 consibrning AM merthlick sysinm As A compositien of iN Particles wirt ntiss.
TTEZE ANE SUBELT TO K "CONSTRAMB"" THAT limir THEIE Moriou, LEAVINB (iN 2D) ZN-k "DEZREZS of Frezsom,
 2N-k EQuATions of Moried in "Gentntlizan Cono intizs" q"

$x_{1}^{2}+1_{1}^{2}=l_{1}^{2}$ So WE Qary Mis
$\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}-l_{2}^{2}$ \& EQNS of moricu, renatips wint

$$
\vec{q}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}\right]^{\top}
$$

moving a phrticie AIONb $\dot{\theta}_{1}, \theta_{2}$ AAlies wonk.

 No $B E$, $\mathcal{D} E$ CA Sili Aiwtys WRITE
$\delta \dot{W}=\sum_{i} \underbrace{\vec{F}_{i}-\delta \vec{r}_{i}}$ wint $\delta \dot{\vec{r}}_{i}$ in Mutowivid coorsis.
Dot \rightarrow "in Dinegiou. bf".
 CODSO BY WRITING
$\delta \vec{r}_{i}=\frac{\partial \vec{r}_{i}}{\partial \vec{q}_{i}} \delta \vec{q}_{j}$. So wE cous wrize

$$
\delta \vec{w}=\sum_{i} \vec{F}_{i}: \sum_{j} \frac{\partial r_{i}}{\partial \vec{z}_{i}} \delta \vec{q}_{j}=\sum_{i} \sum_{j} \vec{F}_{i}: \frac{\partial \vec{r}_{i}}{\partial \vec{q}_{j}} \delta_{q_{j}}
$$

Bur if we linoul ti+As A ski of tonpuz/fonees

$$
\delta \vec{w}=\sum_{j} \vec{p}_{j} \cdot \delta \vec{q}_{j}=\sum_{j} p_{j} \delta \dot{q}_{j} \text { ro! }\left(p_{j} \text { ir } q_{j} D_{i n} r_{n} \omega^{\prime}\right)
$$

Titis moñs TNA USiNs oun EQN For wonn, cie an

HERE is WITERE LAGRNGE RELIES ON NEWTONITN MEURNTICS. NEWON SAR $\frac{d \vec{P}}{d t}=\frac{d}{d t}(n \vec{\nu})=\sum \vec{F}$ on A PARFICCIE.
山int an Equivalent "intrition Fonce". गtis Mesius. WE CON WRITE

$$
P_{j}=\sum_{i} F_{i} \frac{\partial \vec{r}_{i}}{\partial \vec{q}_{j}}=\sum_{i} m \ddot{\vec{r}}_{i} \frac{\partial \vec{r}_{i}}{\partial \vec{q}_{j}}
$$

HTRE is withe ittings Ger sinvae, we Ane iockint Fin A WAY TO BRANG ENEnGY ivi This... Assuming oin Parnizis ONM STONE $\dot{K} \dot{E}=\frac{1}{2} n|\vec{v}|^{2}=\frac{1}{2} m \stackrel{\rightharpoonup}{\vec{r}} \cdot \overrightarrow{\vec{F}}$.
WE NOTE TIAS BY ThE PNoDUC NWw:

$$
\begin{array}{r}
\frac{d}{d t}\left(\dot{\vec{r}}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial \vec{q}_{j}}\right)=\ddot{\vec{r}}_{i} \frac{\partial \vec{r}_{i}}{\partial \vec{q}_{j}}+\underbrace{\stackrel{\rightharpoonup}{r}_{i}} \frac{d}{d t}\left(\frac{\partial \vec{r}_{i}}{\partial \vec{q}_{j}}\right) \\
\left.=\frac{\partial \dot{\vec{r}}_{i}}{\partial \overrightarrow{\vec{q}}_{j}}\right)
\end{array}
$$

So ω_{E} cos sont for $\dot{\vec{r}}_{i} \frac{\partial \vec{r}_{i}}{\partial q_{j}}$ AND SUB inTo oin tiN Fin $p_{j}: P_{j}=\sum_{i} m_{i}\left[\frac{d}{d t}\left(\dot{\vec{r}}_{i}: \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{j}}\right)-\dot{r}_{i} \cdot \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{j}}\right]$
lookini Ar oin $Q Q \dot{N}_{0}, \quad P_{j}=\sum_{i} m_{i}\left[\frac{d}{d t}\left(\dot{\vec{r}}_{i} \cdot \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{j}}\right)-\dot{r}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial \dot{q}_{j}}\right]$
ANS Lookin6 AT $K E=\sum_{i} \frac{1}{2} M_{i} \dot{\vec{r}}_{i} \cdot \dot{\vec{r}}_{i}$
$W \dot{W} \dot{M} \sec \lambda+A-\frac{\partial\left(k_{E}\right)}{\partial q_{j}}=\sum_{i} m_{i} \ddot{\vec{r}}_{i} \cdot \frac{\partial \dot{\vec{r}}_{i}}{\partial q_{j}}$

$$
\frac{\partial\left(k_{E}\right)}{\partial \dot{q}_{j}}=\sum_{i} m_{i} \dot{\vec{r}}_{i}: \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{j}}
$$

$$
P_{j}=\frac{d}{d t}\left(\frac{\partial(k t)}{\partial \dot{q}_{j}}\right)-\frac{\partial(k E)}{\partial q_{j}}
$$

ItIS is CAGRANGES EQN, NHD iT CON BE APPCICD FAR

$$
P_{j}=\frac{d}{d t}\left(\frac{\partial T}{\partial q_{j}}\right)-\frac{\partial T}{\partial q_{j}}
$$

 Some Are Fonces Aasciativ w/ Thte Trasing of PE AND KE iN THE SYSTIM XXNMPLE: IF
$P E=\frac{1}{2} k \dot{q}^{2}+\dot{M} g \dot{b}$ गten TItE Finces Associmin wirtt गnte SPring, GRivitu con BE wRitiw
$-k q-M g$, or $\frac{\partial}{\partial q}(P E)$ itin if
WE CAL PEEV LINE LAGMABE, WE CAN WRITE
$P_{j}=\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{j}}+\frac{\partial V}{\partial q_{j}}$ AnD Now Pj oniy inclubsis
Foncesl torequz jor pans of sysimis ininitt E.

SO LAGRANOE'S METHOD, WIVE REZAITA P THE FINST LAW,

 LET'S Now RETINN To ar insizze-in-Sior By LAGNANGE M MCTHTOD,

$$
\begin{aligned}
& \sum F_{r}=0=\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{r}}\right)-\frac{\partial T}{\partial \dot{r}}+\frac{\partial y^{\prime 0}}{\partial r} \\
& \Sigma T_{\phi}=0=\frac{d}{d t}\left(\frac{\partial T}{\partial \phi}\right)-\frac{\partial T}{\partial \phi}+\frac{\partial y\rangle}{\partial \phi}
\end{aligned}
$$

WE HNS $T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)$, so $u t$ compur:

$$
\begin{aligned}
& \frac{\partial \dot{T}}{\partial \dot{r}}=m \dot{r} \rightarrow \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{r}}\right)=m \dot{r} \\
& \frac{\partial T}{\partial \dot{\phi}}=m r r^{2} \rightarrow \frac{d}{d t}\left(\frac{\partial r}{\partial \phi}\right)=2 m r \dot{r}^{2}+m \dot{r}^{2} \ddot{\phi} \\
& \frac{\partial \dot{T}}{\partial r}=m r \dot{\phi}^{2} \\
& \frac{\partial T}{\partial \phi}=0
\end{aligned}
$$

SO BY LAGRANGEES EQUAFIIN

$$
\left.\begin{array}{l}
\sum F_{r}=0=m \ddot{r}-m \dot{r}^{2} \\
\sum T_{\phi}=0=2 m \dot{r} \dot{r}+m r^{2} \dot{\phi}
\end{array}\right\} \text { matutes NEWTON's! }
$$

ITS'S SAVES TAE ProßuN WE ILAO WITA VSING刀te Finsi uni Dikeiny. Bul ofresi $\frac{\partial T}{\partial q}=0$
Mn ETinten mettio woun wonk; you Just lisie 10 BE coneful! Fon Aj QxAnPle of witne Bort WORl, SEE OUR DOOBLE PENDULYM SMSRM:

DHE $\frac{d}{d t}$ (FUT) FON THE DOUBLE DRWUNOM WAS:

$$
\begin{aligned}
& m_{1}^{2} l_{1}^{2} \ddot{\theta}_{1}+m_{2}\left(l_{1}^{2} \dot{\theta}_{1} \ddot{\theta}_{2}+l_{1} \dot{l}_{2} \dot{\theta}_{1} \dot{\theta}_{2}+l_{1} l_{2} \dot{\theta}_{1} \ddot{\theta}_{2}+l_{2}^{2} \dot{\theta}_{2} \ddot{\theta}_{2}\right) \\
& +g\left(m_{1} l_{1} \sin \theta_{1} \dot{\theta}_{1}+m_{2} l_{2} \sin \left(\theta_{1}+\theta_{1}\right) \dot{\theta}_{1}+m_{2} l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \dot{\theta}_{2}\right) \\
& =\tau_{i} \dot{\theta}_{1}-6 \dot{\theta}_{1}^{2}-\dot{\theta}_{2}^{2}
\end{aligned}
$$

$u \sin P_{j}=\frac{\partial \dot{E}}{\partial \dot{Z j}}$ WE wois GET

$$
\dot{\theta}_{1}: m_{1} l_{1}^{2} \ddot{\theta}_{1}+m_{2}\left(l_{1}^{2} \ddot{\theta}_{1}+l_{1} l_{2} \ddot{\theta}_{2}\right)+g m_{1} l_{1} \sin \dot{\theta}_{1}+g m_{2} l_{2} \sin \left(\theta_{1}+\theta_{2}\right)
$$

$$
=\tau_{i}-b \dot{\theta}_{1}
$$

$\dot{\theta}_{2} \therefore m_{2}\left(l_{1} l_{2} \ddot{\theta}_{1}+l_{2} \dot{\theta}_{2}\right)+g m_{2} l_{2} \sin \left(\theta_{1}+\theta_{2}\right)=-6 \dot{\theta}_{2}$
Now wint LHorNube, Avo usint

$$
\begin{aligned}
& T=\frac{1}{2}\left[m_{1} l_{1}^{2} \dot{\theta}_{1}^{2}+m_{2}\left(l_{1}^{2} \dot{\theta}_{1}^{2}+l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2}+l_{2}^{2} \dot{\theta}_{2}^{2}\right)\right]\left(K_{E}\right) \\
& \left.V=g\left[m_{1} l_{1}-l_{1} \cos \theta_{1}\right)+m_{2}\left(l_{1}+l_{2} l_{1} \cos \theta_{1}-l_{i} \cos \left(\theta_{1}+\theta_{2}\right)\right)\right](P E) \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\theta}_{1}}\right)=m l_{1} \ddot{\theta}_{1}+m_{2} l_{1}^{2} \ddot{\theta}_{1}+2 l_{1} l_{2} \dot{\theta}_{2}^{2} m_{l} \frac{\partial T}{\partial \theta_{1}}=0 \\
& \frac{\partial V}{\partial \theta_{1}}=g m_{1} l_{1} \sin \theta_{1}+m l_{2} l_{1} \sin \theta_{1}+m_{2} l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
& \rightarrow \dot{\theta}_{1}: m_{1} l_{1}^{2} \ddot{\theta}_{1}+m_{2} l_{1}^{2} \ddot{\theta}_{1}+m_{2} l_{1} l_{2} \ddot{\theta}_{2}+g\left(m_{i} l_{1} \sin \theta_{1}+m_{2} l_{1} \sin N \theta_{1}+m_{2} l_{2} \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& =l_{1}-6 \ddot{\theta}_{1}
\end{aligned}
$$

 simintrye.

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\theta}_{2}}\right)=m_{2} l_{2}^{2} \ddot{\theta}_{2}+2 m_{2} \dot{l}_{1} l_{2} \ddot{\theta}_{1} \\
& \frac{\partial T}{\partial \theta_{2}}=0 \quad \frac{\partial \dot{v}}{\partial \theta_{2}}=g m_{2} l_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

So $\dot{\theta}_{2}: m_{2}\left(l_{2}^{2} \dot{\theta}_{2}+2 \dot{l}_{2} l_{1} \ddot{\theta}_{1}\right)+g m_{2} l_{2} \sin \left(\dot{\theta}_{1}+\theta_{2}\right)=-6 \dot{\theta}_{2}$

 LAORNGE OR THE "EXRZNBEO BLOS" MEDRED, BENASE $T \cdot f=f(\vec{q})!$

